

Evolutionary Commercial Spaceflight

Doing it Safely

Dr Andy Quinn

Reaction Engines Ltd & Saturn SMS Ltd

SPACE2015

The ICAO/UNOOSA AeroSPACE Symposium ICAO Headquarters, Montréal, 18–20 March 2015

TOPICS

- Suborbital Players, Spaceports & Future P2P
- Acceptable Level of Safety (ALOS)
- Regulatory Frameworks & Standards & Guidelines

THE PLAYERS

SPACEPORTS

POINT-2-POINT GAME-CHANGERS

P2P LAPCAT SPACEPLANE

RISK

A new product, a new market

Product

RISK

ACCEPTABLE LEVELS OF RISK

ACCEPTABLE LEVELS OF RISK

- Acceptable Levels of Safety (public perception of acceptable risk)
 - Aircraft: Hull Loss Rate 1 in 10 million per flight (equivalent of 0.01 accidents per 100,000 flights)
 - North Sea Helicopter Ops (transportation of workers) 1.35 accidents per 100,000 flights
 - Military Fast Jet Target 2 per 100,000 flights; (was much higher until 2010 and reliability and less low level ops and combat missions)
 - UAVs (Reaper/Predator) 3 to 5 accidents per 100,000 flights (was 30 per 100,000 initially and reliability now better)
 - P2P (like SKYLON derivative /JAXA HST Spaceplane) <u>initially</u> somewhere here?
 - Equivalence for 1 in 20,000 would be 5 accidents per 100,000 missions (is this acceptable?)
 - Current Suborbital Vehicles somewhere here?
 - Equivalence for 1 in 10,000 would be 10 accidents per 100,000 missions (is this acceptable
 - Orbital SKYLON Spaceplane somewhere here?
 - Equivalence for 1 in 2,000 would be 50 accidents per 100,000 missions (is this acceptable?)
 - NASA CCP targets
 - 1 in 1000 (ascent/re-entry), equivalence 100 accidents per 100,000 missions during ascent/re-entry
 - 1 in 270 overall for 210 day mission 370 accidents per 100,000 missions
 - Space Shuttle 1 in 90 per mission (1000 accidents per 100,000)

STANDARDS, GUIDELINES, FRAMEWORKS

These must be:

- International; relevant for those presenting at this conference (US, EU & JAXA based vehicles)
- Inclusive; so point A-to-A and also Point A-to-B
- Practicable and rationalized; hence achievable
- Providing Safety Targets/Objectives and Safety Requirements

The Industry needs proper oversight:

- ICAO/UNOOSA -
 - Symposium great start to listen, to learn, to debate in order to move forward together, safely
- A separate Space Safety Institute?

• The SKYLON (& SABRE) approach:

- Engaging with the UK CAA for the engine
- Already engaged with ESA
- Safety Management & Safety Engineering able to influence design from beginning (based on understanding of aviation + space requirements/targets to rationalize what is appropriate to reach an acceptable level of safety); so an example derived safety requirement could be that for failure modes leading to Inadvertent operation of safety critical systems resulting in Catastrophic Loss shall have 3 inhibits

STANDARDS, GUIDELINES, FRAMEWORKS

OVERSIGHT

ICAO ----- Space Safety Institute??

SARPs -----Role??

ACCEPTABLE MEANS OF COMPLIANCE

FAA-AST

Recommended Practices for Human Space Flight Occupant Safety

Version 1.0

August 27, 2014

Federal Aviation Administration Office of Commercial Space Transportation 800 Independence Avenue, Room 331 Washington, DC 20591

IAASS

HOW SAFE IS SAFE ENOUGH?

To achieve an Acceptable Level of Safety we need regulators providing appropriate safety targets & safety requirements and we need designers/ operators doing this the RIGHT WAY and not just relying on the RIGHT STUFF

THANK YOU

Dr Andy Quinn

Reaction Engines Ltd & Saturn SMS Ltd

